The bisection method

1. Use three steps of the bisection method to approximate a root of the function $f(x) \stackrel{\operatorname{def}}{=} \frac{\sin (x)}{x}+e^{-x}$ starting with $a_{0}=3.0$ and $b_{0}=4.0$.

Answer: To ten significant digits, we have [3, 4], [3, 3.5], [3.25, 3.5], [3.25, 3.375]
2. Given that the maximum absolute error at one step of the bisection method is $b_{k}-a_{k}$, demonstrate that the maximum absolute error after the next step is $\left(b_{k}-a_{k}\right) / 2$.

Answer: See the course notes.
3. Use three steps of the bisection method to approximate a root of the function $f(x) \stackrel{\text { def }}{=} x^{3}-3 x+1$ starting with $a_{0}=1$ and $b_{0}=2$.

Answer: [1, 2], [1.5, 2], [1.5, 1.75], [1.5, 1.625].
4. If you continue to iterate the bisection method in Question 3, what root does it converge to?

Answer: To ten significant digits, 1.532088886
5. In general, should you apply the bisection method if you don't already have an idea as to what a root of a function is?

Answer: The answer is perhaps. For the bisection method, you must already have a bracket of the root, although the function may also have a discontinuity instead of a root.
6. The function x^{2} has a double root at $x=0$. Can you apply the bisection method to find a double root?

Answer: No, for the function has the same sign in the vicinity of a root, so it is impossible to bracket it. Also, whereas x^{2} has a double root at $x=0$, the function $x^{2}+\varepsilon$ has no real roots for $\varepsilon>0$.

